A Neural Reordering Model for Phrase-based Translation

Peng Li Tsinghua University pengli09@gmail.com

joint work with Yang Liu, Maosong Sun, Tatsuya Izuha, Dakun Zhang

segmentation

segmentation reordering

segmentationreorderingtranslation(Koehn et al., 2003; Och and Ney, 2004)

Q: Can you figure out a sentence using these words?

Reordering is Hard

Q: Can you figure out a sentence using these words?

Reordering is Hard

- An NP-complete problem (Knight, 1999; Zaslavskiy et al., 2009)
- Reordering modeling has attracted intensive attention, e.g.
 - Distance-based model (Koehn et al., 2003)
 - Word-based lexicalized model (Koehn et al., 2007)
 - Phrase-based lexicalized model (Tillman, 2004)
 - Hierarchical phrase-based lexicalized model (Galley and Manning, 2008)

Lexicalized Models

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)

Challenge #1: Sparsity

hrase	M	S	D
1	0.7	0.2	0.1
talk	0.1	0.1	0.8
aron	0.7	0.1	0.2
a	0.6	0.1	0.3
	0.4	0.3	0.3

Challenge #2: Ambiguity

Challenge #3: Context Insensitivity

Sparsity

Ambiguity

Context Insensitivity

Sparsity

Ambiguity

Context Insensitivity

? Sparsity

Ambiguity

Context Insensitivity

Including more contexts leads to severer sparsity

Sparsity

Sparsity Including more contexts leads to severer sparsity

Neural Reordering Model

Neural Reordering Model

• A neural classifier for predicting reordering orientations
Neural Reordering Model

- A neural classifier for predicting reordering orientations
- Conditioned on both the current and previous phrase pairs
 - Improves context sensitivity
 - Reduces reordering ambiguity

Neural Reordering Model

- A neural classifier for predicting reordering orientations
- Conditioned on both the current and previous phrase pairs
 - Improves context sensitivity
 - Reduces reordering ambiguity
- A single classifier for all phrase pairs
 - Uses vector space representations \bullet
 - Alleviates the data sparsity problem

held

(Pollack; 1990; Socher et. al, 2011)

17

Reordering error on predicting orientations

Reconstruction error on recovering training examples

Training

Reconstruction error on recovering training examples

Training

Reconstruction Error

Reconstruction error

 $E_{rec}([c_1;c_2];\theta) =$

- Source side average reconstruction error $E_{rec,s}(S;\theta) = \frac{1}{N}$
- Total reconstruction error

 $E_{rec}(S;\theta) = E_{re}$

$$\frac{1}{2}||[c_1;c_2] - [c_1';c_2']||^2$$

$$\frac{1}{T_s} \sum_{i} \sum_{p \in T_R^{\theta}(t_i, s)} E_{rec}([p.c_1, p.c_2]; \theta)$$

$$_{ec,s}(S;\theta) + E_{rec,t}(S;\theta)$$

Reordering Error

• Average cross-entropy error

$$E_{reo}(S;\theta) = \frac{1}{|S|} \sum_{i} \left(-\sum_{o} d_{t_i}(o) \cdot \log(P_{\theta}(o|t_i)) \right)$$

• Joint training objective

$$J = \alpha E_{rec}(S;\theta) + (1-\alpha)E_{reo}(S;\theta) + R(\theta)$$
$$R(\theta) = \frac{\lambda_L}{2}||\theta_L - \theta_{L_0}||^2 + \frac{\lambda_{rec}}{2}||\theta_{rec}||^2 + \frac{\lambda_{reo}}{2}||\theta_{reo}||^2$$

$$J = \alpha E_{rec}(S;\theta) + (1-\alpha)E_{reo}(S;\theta) + R(\theta)$$
$$R(\theta) = \frac{\lambda_L}{2}||\theta_L - \theta_{L_0}||^2 + \frac{\lambda_{rec}}{2}||\theta_{rec}||^2 + \frac{\lambda_{reo}}{2}||\theta_{reo}||^2$$

22

Optimization

Hyper-parameters optimization

•
$$\alpha, \lambda_L, \lambda_{rec}, \lambda_{reo}$$

- Optimized by random search (Bergstra and Bengio, 2012)
- Training objective optimization: L-BFGS
 - Using backpropagation through structures to compute the gradients (Goller and Kuchler, 1996)

Experiments

- Chinese-English translation
- Training: 1.2M sentence pairs
- LM: 4-gram, 397.6M words
- Dev. set: NIST 06
- Test set: NIST 02-05, 08
- Case-insensitive BLEU

Experiments

- Chinese-English translation
- Training: 1.2M sentence pairs
- LM: 4-gram, 397.6M words
- Dev. set: NIST 06
- Test set: NIST 02-05, 08
- Case-insensitive BLEU

- Baselines
 - Distance-based model
 - Lexicalized model

M/S/D Orientations

Care about relative position and adjacency

Left/Right Orientations Only care about relative position

Translation

Translation

Translation

 The unaligned Chinese word "de" makes a big difference in determining M/S/D orientations

IV

 The unaligned Chinese word "de" makes a big difference in determining M/S/D orientations

IV

 The unaligned Chinese word "de" makes a big difference in determining M/S/D orientations

IV

 The unaligned Chinese word "de" makes a big difference in determining M/S/D orientations

• Left/right orientations are not so sensitive to unaligned words

right
Non-Separability

• Left/right orientations are not so sensitive to unaligned words

right

Non-Separability

Non-Separability

Word Vectors word2vec vectors

MT06 (dev) MT02 MT03

MT08 MT04 MT05

Vector Space Representations

Conclusion

- We propose a neural reordering model for phrase-based translation
- It improves the context sensitivity, reduces ambiguity and alleviates the data sparsity problem

Conclusion

- We propose a neural reordering model for phrase-based translation
- It improves the context sensitivity, reduces ambiguity and alleviates the data sparsity problem
- Future work
 - Train MT system and neural classifier jointly
 - Develop more efficient models to leverage larger contexts
 - Extend our work to syntax-based and n-gram based models

Thanks!