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Overview

® Phrase reordering model is a critical
problem in machine translation (MT), and is
NP-complete
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Distortion Models

® Distortion models: penalize relative
displacement of source phrases
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Distortion Models

® Distortion models: penalize relative
displacement of source phrases
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Lexicalized Reordering

Models

® | exicalized reordering models: penalize
reordering conditioned on both the source
and target phrases
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Lexicalized Reordering

Models

® | exicalized reordering models: penalize
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Lexicalized Reordering
Models

® | exicalized reordering models: penalize
reordering conditioned on both the source
and target phrases
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Block Merging

® Reordering as block merging
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Block Merging

® Reordering as block merging
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Block Merging

® Reordering as block merging
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Block Merging

® Reordering as block merging
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Block Merging

® Reordering as block merging
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Block Merging

® Reordering as block merging
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Block Merging

® Reordering as block merging
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Block Merging

® Reordering as block merging
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Block Merging

® Reordering as block merging
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Block Merging

® Can you find a counter example?

(Huang et al,, 2009) 12



Block Merging

® Can you find a counter example?
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Block Merging

“inside-outside”
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ITG

® |nversion transduction grammar (ITG)

X — [X1,X?] :straight rule
X = (X', X?) :inverted rule
X — f/e : lexical rules

(Wu, 1997)



I TG-based Reordering
Model

® Type |:Incorporating ITG into left-to-right

decoding to constrain the reordering space
(e.g., Zens et al., 2004; Feng et al., 2010)

® Type ll: Translation as ITG parsing, e.g.

® Max-Ent ITG reordering model: using
maximum entropy (MaxEnt) model to
predict which rule to use (xiong et al.,, 2006)



MaxEnt ITG Reordering
Model

o9 Potentially alleviates the data sparseness
\/ problem

o9 How to extract features from training
7 examples!?

® Which words are representative for
predicting reordering?

® Xiong et al. (2006) only use boundary
words



This Work

® We propose an ITG reordering classifier
based on recursive autoencoders (RAE)

® Our model considers the whole phrases

® RAEs can produce vector space
representations for arbitrary strings

® Our system achieves|.0/7 BLEU points
improvement on NIST 2008 dataset



Neural ITG Reordering
Model
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Neural ITG Reordering
Model

Real-valued
vector

rxnrxn @oo] [€69]

i

: ® | E
M %8 never i: MW i A | seen before:
L cong mei you || ijian guo de '

.........................................................................




Neural ITG Reordering
Model
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Translation
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Autoencoders

® Fach word is represented as a vector, e.g.

e “female” > [0.]1 0.8 0.4]"
e “friend” » [0.7 0.1 0.5]T

® What is the vector representation of
“female friend’?
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Autoencoders

® Encoding

p=fOWDer;e] +0) JE

® Decoding
s ey = fAWPp + b))

® What about multi-word strings!?
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Recursive Autoencoders
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Training
Reordering error: how well the classifier predicts
the merging order?
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Reconstruction error: how well the learned vector
space representations represent the corresponding
strings”?
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Reconstruction Error

® Reconstruction error
1
Erec(lc1;c2];0) = 5\\[01302] s

® Source side average reconstruction error

Erec,s(S;0) Z Z Erec([p-c1,p-c2; 0)

? pETG (t;,s)
® Jotal reconstruction error
Erec(S; (9) — Erec,s(S; (9) - E'rec,t(s; 9)
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Reordering Error

® Average cross-entropy error
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® Joint training objective
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Optimization

® Hyper-parameters optimization

o (, >\L7 Areca )\reo

® Optimized by random search (Bergstra and
Bengio, 2012)

® Training objective optimization: L-BFGS

® Using backpropagation through structures
to compute gradients (Goller and Kuchler, 1996)
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Experiments

Training corpus: 1.23M sentence pairs

Language model: 4-gram language model
trained on the Xinhua portion of the

GIGAWORD corpus
Dev.set: NIST 2006 MT dataset
Test set: NIST 2008 MT dataset

Metric: case-insensitive BLEU-4 score
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BLEU-4

System NISTO06 (dev) NISTO8 (tst)

maxent
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*. significantly better (p < 0.01)
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Sentence
Length
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Classification Accuracy
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Conclusion

® We have presented an ITG reordering classifier
based on RAEs

® Feature work

® Combine linguistically-motivated labels with
recursive neural networks

® |nvestigate more efficient decoding algorithms

® Apply our method to other phrase-based and
even syntax-based systems
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Training Data Size

# of examples NISTO06 (dev) NISTO8 (ist)

100,000

200,000 30.75 23.89
300,000 30.80 24.35
400,000 31.0° 24.45

6,004,441 31.6 24.82




Cluster Examples

Cluster 1

works for

verity on
tunnels from
transparency in

opinion at

Cluster 2

these people who

the reasons why

the story of how

the system which
the trend towards

Cluster 3

of the three

on the fundamental
over the entire
through its own
with the best




